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ABSTRACT

The snowflake divertor concept entails modifying the poloidal field
system of a tokamak to produce a 2nd-order null in magnetic-field
strength in place of the conventional 1st-order null x point within
the equilibrium magnetic-field separatrix. It more effectively
spreads the divertor heat load and offers a number of other
advantages. We describe plans to modify the COGENT edge
kinetic code to study snowflake divertors. COGENT employs
mapped multi-block grid technology to handle the geometric
complexity of the conventional divertor configuration. To simulate
snowflake divertors, the number of grid blocks is increased from 8
to 12, consistent with the modified topology of the exact snowflake
configuration. We examine the applicability of the modified
structure to study configurations that are not exactly snowflakes,
the so-called “snowflake-plus” and “snowflake-minus”
configurations. Initial applications of the modified code will be
assessment of collisionless orbit dynamics and neoclassical
transport. Qj@
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OUTLINE

« What and why of snowflake divertors

Exact versus approximate snowflake divertors

Objectives for modeling snowflakes with COGENT

COGENT gridding strategy for conventional divertor tokamaks
Strategy for extension to snowflakes: simple!

First step: model and test local region about poloidal field null
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Snowflake divertors: What and Why

« What: Extra coil(s) to produce 2"-order null instead of usual (15t-order) x
point in SOL. -

 Why:
— Primary benefit, spreading of heat load via increased flux expansion.

— Secondary benefits: further spreading among multiple divertor legs
via MHD convection

— Further isolation of main SOL and divertor legs RE instabilities
(increased shear)

— Other benefits, e.g. reduced peak heat load during ELMs QZ”W
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Exact versus approximate snowflake divertors
» Exact snowflake: perfect tuning of coils to achieve 2"-order null “ W\ L

« Structurally unstable: if one of the coils has current a bit too high or
low, the 2"d-order null splits into 2 nearby 1%t-order nulls

+ Snowflake pl.ldjs/: L f)no@(e/yi 7/\ (

* Above examples are symmetric approximate snowflakes.
They needn’t be. e.g.:

(b)

« |f the 1st-order nulls are close enough, macroscopic
behavior mostly indistinguishable from exact snowflake.
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Objectives for modeling snowflakes with COGENT

« Snowflake divertors are getting a lot of attention at DIII-D and
elsewhere, need to model them.

« Initial objectives similar to those for conventional divertors:

— Neoclassically driven flows and radial transport in presence of
divertor losses

— Distribution of collision-driven losses to divertor plates

« Have divertor geometry in the mix as COGENT capability is expanded
(e.g. to include 5-D physics)
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COGENT gridding strategy for conventional divertors:
abandon field-line following near x point

* When the divertor version of COGENT was first developed it was noted
that the nominally 4-order discretization was yielding results for
advection converging more slowly than (Ax)*

— Explanation: curvature, metrics becoming singular as x point is
approached.

 Solution: Gridding that follows flux surfaces away from x point but
departs so as to preserve smoothness near x point

— Flows near x point not flux-surface-following anyway
— Use 4th-order interpolation to fill ghost cells
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Strategy for extension to snowflakes: simple!

 Implication of extrapolated grid strategy for snowflake divertor: Since
field-line following is abandoned anyway, a single grid structure

generated for an exact snowflake divertor geometry is likely to work for
nearby approximate snowflakes

« Main complication: increase of number of grid blocks required to
describe region about field null increases from 8 to 12:
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First step: model local region about poloidal field null

* Ryutov et al PPCF ‘08: cubic expansion of flux surface about null.
— Neglecting current near null, have flux function

S =lix+lz— q3x2 +2q,x7 + Q322 + clx3 — 3c4x22 — 3C’1x22 + c4z3
— And fields

— (R+x)B, =1 +2g:x +2q37 — 3cq(x? — 7%) — 6¢1x2,
(R +)C)BZ = [ — 26]3)6 + 2q2Z + 3¢ (x2 — Zz) — 6caxz.

* With suitable choices of coefficients, can make exact snowflake and
approximate snowflakes

« Strategy:

— Starting from exact snowflake coefficients, generate extrapolated grid
as discussed above

— Do runs with B on this grid evaluated for exact and approximate
snowflakes, compare physics results (next slide)
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REMARKS

« We use grid generator developed by P. Schwartz, which does
variational optimization of grid smoothness and field line following with

weights that vary with field-line curvature (builds on approach of
Brackbill and Salzman, JCP 1982)

« Initial testing will be with pure advection (no collisions): Initiate (half)
Maxwellian in main SOL; predictable difference of fluxes on various
divertor plates depending on type of approximate snowflake

N ML Sy

« Subsequent studies: add collisions (neoclassical); add model of MHD
convective mixing near null; full SOL. Compare with analytic models
that may be available, and with experiments

IS0
I S

\edge
| simudation
atory

R. Cohen et al APS-DPP 2014 10



First step completed: Generating smooth extrapolatable
grid for snowflake divertor region

* Provided input to the optimizer: a grid that follows flux surfaces (but has

sharp curves near separatrix).
« Qutput obtained from optimizer, follows field lines away from null,
smooth/straighter near null

S Grid extrapolation
(cartoon)
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Plot of field vectors illustrates what the optimizer does

curvature is weak (away from field
/ null), departs where curvature is
/ strong
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% Grids follow flux surfaces where their
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